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(Received 9 September 1995 and in revised form 30 November 1998)

We examine the nature of detachment experimentally and numerically in steady
axisymmetric flows through sinusoidally constricted tubes with Re varying from 10−4

to 102. Various regions can be distinguished, including flow detachment at the lowest
Re used. Further, the transition in the pressure drop from a linear Poiseuille-like
behaviour to a nonlinear pressure-drop–velocity relationship is not generally related
to the appearance of detachment regions but rather to their form and to the nature of
their growth. For the geometries considered here, the relationship between the start
of nonlinearity in the pressure drop and incipient detachment depends on whether
detachment is symmetric (detachment point at the bottom of a trough): for flow
geometries with symmetric incipient detachment kinematic changes occur at Re lower
than or the same as that at which dynamic changes can be detected, whereas for
those with asymmetric incipient detachment they occur at higher Re. We look at
various possible criteria for determining the transition from the viscous to the inertial
range. Finally, we discuss the effect of elongational terms in the energy dissipation on
flow through periodically constricted tubes and compare this flow with flow through
porous media.

1. Introduction
The conditions under which flow detaches and the dynamic consequences are one

of the fundamental areas of fluid mechanics research, occurring in many fields of flow
science and technology. We will be concerned with laminar flows through periodically
constricted tubes from the inertial down to the creeping flow regime. This geometry
has become a popular model of flows in such varied fields as stenosed arteries
and blood oxygenators, in flow-off problems as well as in leaching and filtration in
natural and artificial situations, the latter involving the flow through porous media.
For creeping flow (nominally Re < 1) it was long a belief, perhaps fostered by the
Hele-Shaw/potential analogy, that when inertial effects become negligible the flow
will remain attached (see also e.g. the remarks by Jeffrey & Sherwood 1980). This
belief was perhaps nurtured by the experimental observation in diverging channels
that the adverse pressure gradient associated with inertial forces is a prerequisite for
flow detachment. Moffatt (1964) was the first to prove viscous detachment to be a
widespread effect by analytically studying Stokes flow in a wedge-shaped cavity flow.
Other authors subsequently investigated various configurations, such as two in-line
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Figure 1. Sketch of the geometry with nomenclature.

spheres (Davis et al. 1976), a cylinder in the neighbourhood of a wall (Davis &
O’Neill 1977) or two cylinders arranged perpendicular to the main flow (Dorrepaal
& O’Neill 1979), all of which yielded Stokes flow detachment (for Re→ 0). The first
experimental demonstration of creeping flow detachment was made by Collins (1979)
for a spherical cap and by Taneda (1979) for several other geometries. A combined
analytical and experimental study of steady creeping cylindrical Couette flow past
a wavy-walled inner cylinder was done by Munson, Rangwalla & Mann (1985),
where the conditions for flow detachment were explored in their dependence on the
wavelength and amplitude of the wall form, as well as on the mean channel width.
However, most analytical approaches only focused on kinematic effects, and were
often only qualitative due to the approximations applied. Moreover, the theoretical
and experimental studies mentioned above dealt with creeping flow, allowing no
variation in the Reynolds number. Thus, despite theoretical and experimental efforts
in the prediction of geometrical configurations containing regions of flow detachment,
a deeper understanding of the mechanism of detachment in creeping flows and its
relation and relevance to detachment at low and moderate Re is still lacking.

For flow in periodically constricted tubes as shown in figure 1 – (in our case, one
generated by the surface of revolution of a cosine function about the axis of symmetry)
– Chow & Soda (1972) did an asymptotic analysis for large wavelengths, which yielded
detachment down to creeping-flow Reynolds numbers. Lahbabi & Chang (1986)
investigated the flow field numerically and Deiber & Schowalter (1979), Ralph (1987)
and Deiber et al. (1992) performed experimental and numerical studies. Nishimura,
Yoshiji & Kawamura (1983), Sobey (1980) and Stephanoff, Sobey & Bellhouse (1980)
did numerical and experimental work on the analogous channel geometry, the latter
two on time-dependent pulsatile flows, and Guzman & Amon (1996) investigated
their chaotic behaviour. All publications on periodically constricted tubes or channels
cited above solved the complete Navier–Stokes equations (either steady or unsteady)
and dealt mainly with the influence of the nonlinear terms and the transition to
turbulence. Pilitsis & Beris (1991) included non-Newtonian effects for tube flow. The
question of creeping-flow detachment, however, received no more than a glancing
interest from the above authors. On the other hand, Fedkiw & Newman (1977, 1987),
Neira & Payatakes (1979) and Tilton & Payatakes (1984) solved the Stokes equations
numerically for a sinusoidally constricted tube to investigate friction effects in porous
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media. Hemmat & Borhan (1995) did the same, and they paid some attention to flow
detachment in the creeping regime.

When viewing the present state of research, one can name three fields in which
the preceding work came to no or only contradicting results. Firstly, there has been
no experimental verification of the predicted conditions for Stokes flow detach-
ment so far, despite large discrepancies between the different authors for stronger
tube constrictions (see Hemmat & Borhan 1995). Secondly, no work has been un-
dertaken to compare the conditions for detachment in creeping (Stokes) flow with
those of low Reynolds number flow or flow at moderate Re. Thirdly, different
authors have made contradictory statements about the relationship between incip-
ient flow detachment and the departure from a linear dependence of the pres-
sure drop on the mean flow rate. Two authors proposed a general coincidence of
these two events based on their experimental and numerical findings (Deiber &
Schowalter 1979 and Ralph 1987), whereas Lahbabi & Chang (1986) showed a dif-
ference of one order of magnitude in Re in a numerical study. Each of the above
papers dealt with a single specific geometry. Therefore we shall concentrate our
work on three topics: (i) Conditions for the existence of creeping flow detachment;
(ii) changes in the detachment behaviour with Re growing to low or moderate values,
and (iii) possible relationships to dynamic changes. The ultimate aim of the study is
to give an improved basis for the understanding of the detachment mechanisms in
the different flow ranges.

The last topic we will broach is the relationship between the above tube flow and
the flow through porous media. Since its introduction by Petersen (1954) constricted
tube flow has become a popular model for the flow through porous media. The
linear Darcy–Kozeny law is often used for low Reynolds number flow, even though
criticism of its use here is almost as old as the law itself (see for example Forchheimer
1901) and a perennial topic (Firdaouss, Guermond & Le Quéré 1997). This model
for porous flow is fraught with problems because of, amongst others, nonlinear terms
in the pressure–velocity correlation that influence the flow, even at Re = O(1), which
are still the subject of intensive research (see for example Rasoloarijaona & Auriault
1994; Kececioglu & Jiang 1994; Andrade et al. 1995). A second problem concerns the
coefficient of the linear term in the pressure–velocity correlation, which is higher than
the theoretical approximations by a factor 2 to 3 (see e.g. Bird, Stewart & Lightfoot
1960, p. 196 for a theoretical estimation and Ergun 1952 for experimental results).
Durst, Haas & Interthal (1987) suggested that the discrepancy between theory and
experiment was due to the oversimplification of the flow field by modelling it as
an array of straight capillary tubes whose diameter is determined by means of the
hydraulic radius concept. They speculated that the neglected elongational strain terms
in the determination of the energy dissipation would be responsible for the difference
between theory and experiment. Unlike the flow geometry of a randomly packed bed
of spheres that they consider, our flow geometry admits a simple estimation of the
ratio of elongational strain to shear terms in the limit Re→ 0.

2. Experimental set-up and numerical methods
2.1. Experimental set-up

Experiments were performed with six different tube geometries. From the three
governing dimensional parameters, the minimum radius Rmin = Ro−a, the wavelength
λ and the amplitude a (see figure 1 for definitions), two dimensionless parameters
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Total number of
λ (mm) γ δ δRo segments

53.33 0.15 0.17 0.32 9
38.46 0.15 0.35 0.5 12
21.74 0.15 0.85 1 22
47.05 0.21 0.11 0.32 10
35.29 0.21 0.29 0.5 14
20.62 0.21 0.79 1 24

Table 1. Geometrical parameters of the periodically constricted tubes used in
the experiments.
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Figure 2. Experimental set-up.

γ = a/λ and δ = Rmin/λ, can be formed. For an easier comparison with other results,
we also show the parameter δ defined with the mean radius: δRo = δ + γ. For fixed
λ, reducing δ means narrowing tubes, reducing γ means flattening the wave. Two
different values of γ and three different values of δRo were investigated. The values
of λ, γ, δ, δRo and the total number of segments for each geometry used in the
experiments are given in table 1.

The tubes were made by CNC milling segments of Plexiglas of length λ and
polishing them to achieve transparent surfaces. The segments varied by a maximum
of 25 µm from an ideal cosine of revolution. All segments for a particular parameter
combination were slid into a glass tube of length l = 0.53 m and diameter 60± 0.02 mm
(see sketch of the apparatus in figure 2). This allowed an easy change of parameters.
The segments had an outer diameter of 59.7 mm, so that the alignment between
segments was out by no more than 0.3 mm. Owing to this set-up, all constricted tubes
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had a maximum inner diameter of 50 mm. Even though the slit between constriction
segments and the glass tube was filled with silicon oil, the glass tube itself being
submerged in silicon oil enclosed by a box of Plexiglas with parallel walls and a
square cross-section (all the materials employed: silicon oil, Duran glass and Plexiglas
have very similar refractive indices n = 1.404; 1.473; 1.490 respectively), optical
distortion of the flow patterns inside the constricted tube could not be suppressed
entirely. Therefore, a millimetre grid that served as a reference was introduced into
the mid-plane (the longitudinal section containing the tube’s axis) of each constricted
tube and photographs were taken in the direction perpendicular to the grid plane of
the tubes when filled. These reference photographs showed distortion to be negligible
for the constricted tubes with δ 6 0.17. For all other tubes the evaluation of the
experimentally obtained detachment and reattachment points had to be done using
the reference grid photos to eliminate distortion.

The reservoir and the test section were filled with silicon oil and left standing for
up to twelve hours to allow air bubbles to surface. Each run began by opening a valve
– either of a stopcock or of a flange-type (see justification presently) – at the bottom
of the tube. Oil flowed out as a free jet into a barrel standing on a balance. The
weight was recorded via a PC every second, and from this mass flux both the volume
flux Q and the pressure head h were calculated as the reservoir drained. The oil left
the reservoir via a short constrictor some 50 mm long and both entered and left the
test section at its largest constriction. In order to allow a continuous variation of the
head as well as to avoid frictional heating, no pump was used, the reservoir simply
being refilled by hand. The room temperature changed by less than 0.2 ◦C during the
longest runs of 2 hours. The kinematic viscosity ν of the different silicon oils (ν varied
from 100 to 60 000 mm2 s−1) was measured by means of several capillary viscometers
(to cover the entire range) stabilized to ±0.1 ◦C in a temperature-controlled bath. The
overall accuracy in the determination of the oil’s viscosity was around ± 2%.

For kinematic measurements tracer particles of 28 to 50 µm in diameter were mixed
into the fluid and a 1 mm thick light sheet was projected through the axis of the
tube. Long-exposure photographs yielded pathlines of the two-dimensional steady
flow field (see figures 3 and 4). The Reynolds number

Re = 2Rmin ū/ν with ū = Q/(πR2
min) (2.1)

was varied by increasing or decreasing Q with the stopcock-type valve mentioned
above.

For pressure drop measurements Re could not be varied by means of a stopcock
since these were made by reading off the pressure head, and would thus have been
falsified by throttling. Re was therefore varied by changing the viscosity in ten steps
by mixing oils of different viscosities. The stopcock was replaced by a flange (see
figure 2). The pressure loss due to the flow into the entrance was approximated by
assuming a Poiseuille relation to hold (with the volume flux Q and a suitable mean
radius). A second correction was applied to account for the dynamic pressure loss
at higher Re by subtracting the dynamic pressure 1

2
ρū2 from the static pressure loss.

Thus, the effective pressure loss over the full length of the periodically constricted
tube reads as follows:

∆peff = ρgh− ∆pentrance − 1
2
ρū2.

There is a further pressure loss due to viscosity slowing the flow along the floor
of the reservoir and along the more or less dirty free surface. These only become
important for low heads, which we thus avoided. We defined a modified Fanning
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friction factor of the wavy walled tube as

f =
∆peff

ρu2

Rmin

nλ
, (2.2)

n being the number of segments used. Strictly speaking the above draining flow is
unsteady with a time scale of τ = (h − l)µlR2

res/(ρghR
4
min) (using Hagen–Poiseuille’s

law for the depletion of the reservoir with Rres the reservoir radius). The mean
tube velocity u is proportional to ρghR2

min/(µl) and thus the Strouhal number Sr =
Rmin/(uτ) = Rmin/((h − l)R2

res), which is of the order of 10−3 for the worst cases. We
may thus regard the flow as being steady. For more details on the measurements
themselves see Leneweit (1995).

2.2. Numerical calculations

Numerical solutions of the Navier–Stokes equations for incompressible steady New-
tonian flow were obtained by means of a finite volume method. Its main features are
described in Perić (1985) and Perić, Kessler & Scheuerer (1988). The equations of
motion for two-dimensional, axisymmetric flow are solved in the primitive variable
formulation (velocity u and pressure p). A non-staggered variable arrangement is used
and a stabilization term added to prevent the decoupling of velocity and pressure.
Non-orthogonal grids are generated that allow an easy variation of the geometry.

Discretization of the convective terms could be performed optionally up to first,
second or third order. We chose second-order central differences for our calculations.
For the coupling of pressure and velocity a simple algorithm after Patankar &
Spalding (1972) was implemented and an incomplete lower-upper decomposition
after Stone (1968) was used for solving the algebraic equations. The programme
makes use of a multi-grid scheme to accelerate convergence and our calculations were
performed on four grid levels, the finest grid consisting of 80× 160 volume elements.

3. Results
3.1. Kinematic results

Figure 3 shows streamlines of the entire flow field, illustrating asymmetric detachment
due to inertia for Re= 17, δ= 0.11 and γ= 0.21. In contrast figure 4 illustrates
symmetric Stokes flow for Re = 0.025, δ = 0.79 and γ = 0.21. In the following we
shall discuss the form and extent of the detachment region, characterized by the
occurrence and position of the detachment and reattachment points (‘points’ are
really lines and lines are really surfaces). We then discuss the conditions for incipient
detachment (general considerations and the effect of changing γ) and the effects of
increasing Re, changing the boundary conditions, the velocity profile and the scaling
radius.

3.1.1. The form of the detachment region

When the flow was detached this region took the form of a ring-shaped recirculation
zone. The two main differences between figures 3 and 4 are the extent of the
recirculation zone and the upstream/downstream symmetry. Although the form of
the detachment streamline (whether it is convex or concave, inflection points, etc.)
would certainly need a more detailed quantitative investigation we will first give a
short qualitative survey, followed by a detailed description of the detachment and
reattachment points in the next section. The variation of the upstream/downstream
symmetry with growing Re for the four extremes of small and large values of δ
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Figure 3. Streamlines of the entire flow field for one wavelength (flow from top to bottom)
illustrating asymmetric detachment due to inertia. Re = 17; δ = 0.11; γ = 0.21. Exposure time: 10 s.

Figure 4. Streamlines of the trough region in the creeping regime illustrating symmetric
detachment (flow from left to right). Re = 0.025; δ = 0.79; γ = 0.21. Exposure time: 600 s.

and γ is summarized in figure 5. Here we see that small δ yields attached creeping
flows (i) whereas a symmetrically detached creeping flow is achieved for large δ (ii).
Symmetrically detached flow beginning at a low Reynolds number only takes place
for small δ and large γ (iii). For the fourth parameter combination with small δ and γ,
initial flow detachment at low Re is asymmetric and in all other cases the creeping flow
detachment zones become asymmetric in the low Re range (iv). In all these cases the
downstream streamline is depressed. It is interesting to note that for viscoelastic fluids
it is the upstream end of the streamline which is depressed, even for creeping flow
(Pilitsis & Beris 1991). All parameter combinations share the common feature that the
detachment zones tend to symmetry, not only in the creeping-flow range but also in
the high-Re limit of laminar flow (apart from a short asymmetric ‘tail’ remaining near
the reattachment point). A further increase in Re leads to the transition to turbulence
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Figure 5. Variation of symmetry with growing Re for small and large values of δ and γ in tabular
form: (i) creeping flow attached, (ii) creeping flow symmetrically detached, (iii) low Re symmetric
detachment, (iv) low Re asymmetric detachment, (v) laminar high Re limit.

with the detachment zones becoming oscillatory (Nishimura et al. 1984; Lahbabi &
Chang 1986; Guzman & Amon 1996). In the following we shall characterize the
extent of the detachment region by the detachment and reattachment points alone.

3.1.2. The extent of the detachment region

We first report on the behaviour of the detachment zone for a fixed amplitude-
to-wavelength ratio γ = 0.21 when Re is increased between 10−2 and 102 as the
dimensionless mean radius δ grows (0.11 < δ < 0.79). Results of numerical calcu-
lations are included in figure 6. The larger the Reynolds number, the better the
agreement between experiment and numerical simulation, a strange result at first
glance. This behaviour is most likely due to the difficulty in experimentally resolving
the detachment zone when it is small and restricted to the bottom of the cavity. The
fact that there is no experimental detachment zone for δ = 0.11 and Re < 5.8 ought
not be seen as a contradiction to simulations, since the detachment zone must be
large enough for a closed pathline of at least one tracer particle to be followed. We
thus could not resolve the flow in more detail. The most apparent feature in figure
6 is that the detachment zones grow with increasing Re for all fixed δ and γ. The
same holds for increasing γ for fixed δ and Re (cf. figures 6 and 7). This cannot be
said with the same generality on changing δ: for Re < 10 the detachment zone grows
with growing δ but for Re > 20 the opposite holds. For δ > 0.29 the width of the
detachment zone remains constant in the creeping-flow range, whereas for δ = 0.11
the detachment zone diminishes with decreasing Re and finally vanishes at Re = 1.5.
The detachment zones for δ > 0.29 remain symmetric with respect to the z = 0 plane
and constant in size up to some limiting Re = Rekl (kinematic limit), where two things
occur simultaneously: symmetry is lost and there is an abrupt increase in the width
of the detachment zone (Rekl ≈ 3.4 for δ = 0.29 and Rekl ≈ 11.4 for δ = 0.79). The
seemingly parallel and vertical lines indicate that for these δ-values detachment takes
place in the creeping-flow limit, for they showed no sign of converging, even for the
lowest Re considered.

The results in figure 7 with flatter wavy walls (γ = 0.15) are essentially the same
as those in figure 6. Here none of the curves shows Stokes flow detachment and the
Reynolds number of incipient detachment Redet decreases with increasing δ as it did
in figure 6. The curve for δ = 0.17 indicates a parabolic increase in size with growing
Re (no inflection points, see figure 7) and its detachment zone, unsymmetrical at low
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Figure 6. The dependence of the detachment and reattachment points on Re with γ = 0.21. The
wave form (same scale as the abscissa) is included below to give an impression of the real geometry.
The hollow circles for γ = 0.5 and δ = 0.25 are from Pilitsis & Beris (1991).

Re, becomes increasingly symmetrical at higher Re. For δ = 0.35, Redet is decreased
only slightly. Here the point of incipient detachment is in the trough (thus symmetric).
The detachment region moves upstream and becomes asymmetric the moment Re
increases. For δ = 0.85 Redet is decreased drastically, the detachment zone is symmetric
up to Re 6 20 and the two branches of the curve have inflection points like the curves
in figure 6. The experimentally determined detachment zones must exceed a minimum
size to become recognizable, so this may explain why we could not experimentally
resolve incipient detachment any better. But since there is good agreement between
experiment and numerics as soon as a finite detachment zone could be observed in the
experiments, this gives credence to the numerically obtained v-shapes of the curves in
both figures 6 and 7.

For completeness we have included Pilitsis & Beris’ (1991) results in figure 6. The
detachment region for γ = 0.25 and δ = 0.25 is slightly larger than that for γ = 0.21
and δ = 0.29. These additional results confirm the trend, that increasing γ increases the
detachment zones at constant Re and δ, as can be observed comparing figures 6 and 7.
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Figure 7. The dependence of the detachment and reattachment points on Re with γ = 0.15.
The long dashed line is from Nishimura et al. (1983).

3.1.3. Incipient detachment: symmetry

Figure 7 (γ = 0.15) yields three Reynolds numbers at which detachment is just
beginning. To get a better insight in the effect on Redet when δ is varied (for γ = 0.15),
the value of Redet was iterated numerically for five further values of δ, the results
of which are shown in figure 8. The solid curve represents Redet (left ordinate) and
the dashed curve indicates the location of incipient detachment (right ordinate). A
boundary between symmetric and asymmetric detachment was made at the point
δ ≈ 0.35. The value δ = 0 corresponds to complete blockage of the tube, so that
we considered values of δ > 0.1. The solid curve divides the graph into two regions:
for Re − δ combinations below the curve no detachment takes place; elsewhere we
find detachment. The Redet curve initially decreases with δ with a positive curvature
down to an inflection point at δ ≈ 0.35 and then decreases with negative curvature
until finally Stokes flow detachment is reached for δ > 0.94. For δ 6 0.35 asymmetric
detachment takes place, whereas incipient detachment for δ > 0.35 is symmetric. In the
region of symmetric detachment we can further distinguish between geometries where
the flow has to reach a certain finite Reynolds number to cause flow detachment
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Figure 8. Numerical calculation of the Reynolds number at the beginning of detachment Redet and
axial position of incipient detachment versus δ with γ = 0.15 for all tube constrictions. The extent
of the detachment zone is only one volume element at Redet, therefore the detachment zone is traced
with only one (dashed) line for δ 6 0.94. Symmetric bifurcation (not shown) occurs for δ > 0.94.
The point (with a short line) in the left bottom corner is for γ = 0.21.

(inertia not negligible), and those geometries that detach for all Re (δ > 0.94 for
figure 8). The latter case is referred to as creeping-flow detachment and the former
as transitional detachment (0.35 6 δ 6 0.94 for figure 8), since it lies between the
creeping and the more clearly inertial detachment behaviour.

3.1.4. Incipient detachment: increasing Re

It is particularly interesting to note that all curves in figures 6 and 7 which show
symmetric incipient detachment at Redet have inflection points in the growth of the
detachment regions with growing Re (i.e. all curves in figure 6 and the curve with
δ = 0.85 in figure 7). The curve with δ = 0.35, γ = 0.15 in figure 7 has an inflection
point in the shift of the reattachment point with growing Re, but no inflection point
for the detachment point. As can be seen in figure 8, this geometry divides the
regions between asymmetric and symmetric incipient detachment: the growth of the
detachment region of those geometries with symmetric incipient detachment changes
from a more than logarithmic growth to a less than logarithmic growth at higher Re
as is the case for the curve with asymmetric detachment behaviour at Redet.

3.1.5. Incipient detachment: changing γ

Since the simulations were intended for comparison with experimental results only
those parameter combinations (with the exception of figure 8) studied experimentally
were also numerically investigated. It is however possible to make a few general
statements about the effect of changing γ. Figure 6 with γ= 0.21 and δ= 0.11 yields
but a single point, shown in figure 8. The other two δ-values with the same γ have
creeping-flow detachment, so that there are no further points for this curve. We
include a line segement to indicate the path which the incipient detachment line could
follow there: an increase in γ shifts the intersection point to lower values of δ. The
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limit of γ → 0 yields a smooth tube without creeping-flow detachment, from which
one can conclude that for γ < 0.15 the region for creeping-flow detachment is shifted
to δ > 0.94. Moffatt (1964) found that Stokes flow at a sharp corner whose angle
of inclination α exceeded 159◦ attached. Smoothing this corner will further suppress
detachment, so that one might well expect the Redet − δ behaviour to converge to a
horizontal asymptote for sufficiently small but finite γ.

3.1.6. Incipient detachment: changing boundary conditions, axisymmetric vs. plane

As mentioned in the introduction Nishimura et al. (1983) considered the plane
channel case numerically and experimentally. One of their findings pertinent to our
study is the extent of detachment in the creeping-flow regime as shown by the long-
dashed curve in figure 7. Their value of δ = 0.175 is closest to our δ = 0.17 curve.
This curve has γ = 0.15, slightly higher than their γ = 0.125. Comparing these curves
not only confirms the tendency for Redet to decrease as γ grows, but also confirms that
a marked asymmetry is present in both planar and axisymmetric cases. This indicates
that the detachment behaviour of plane flow is even quantitatively comparable to
that of axisymmetric flow if the velocity profiles (Poiseuille flow, see next section) are
similar.

3.1.7. Incipient detachment: changing the velocity profile, Poiseuille vs. Couette flow

One of the main kinematic results for creeping flow (figures 6 and 8) was that as
the tube wall approaches the axis (decreasing δ at constant γ and Re) the size of the
detachment zone decreases and ultimately vanishes. How does this result compare
with the work of other authors? Munson et al. (1985) analytically and experimentally
investigated Stokes flow detachment in a cylindrical Couette flow with a stationary
inner wavy cylinder and a rotating outer cylinder. They theoretically confirmed that
as the number of waves increased, their cylindrical flow became equivalent to a plane
creeping Couette flow over a wavy wall with sinusoidal wall variations. For this
straight-wall approximation they found that, as the plane wall approached the wavy
wall, detachment is promoted. Does this result not stand in direct contradiction to
our findings just mentioned? Apart from our axisymmetry and their channel-like flow
(which, from considerations above, seem to make little difference) the main distinction
between the flows is that in the Couette flow the velocity on the plane wall is constant
– the elongational strain rate ∂uz/∂z vanishes there (when z denotes the direction of
the moving wall), as dictated by their boundary conditions. Contrarily, our centreline
axial velocity varies continuously, thus ∂uz/∂z ≈ 0. In our case, due to continuity,
there is mass transport to the tube walls in the expanding part of the tube, which, in
its turn, tends to suppress detachment. If both results are correct, low-Re detachment
is sensitive to a change in the flow drive (pressure driven or wall driven), a fact which
will need to be more closely considered for future theoretical work on more general
cavity forms.

3.1.8. Incipient detachment: changing the scaling radius

The fact that the point δ ≈ 0.35 delineates the border both between the sign of the
curvature of the Redet–δ curve and between incipient a/symmetry (figure 8) merits
more attention. To what extent is this no more than an accident due to our choice
for the definition of Re? For example, almost all previous authors chose the mean
radius Ro. To examine this effect we set an arbitrary radius Ra = Ro + ka (a is the
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Figure 9. The effect of employing different scaling tube radii for Redet vs. δa (equation (3.1)). The
values of the parameter k are written to the left of each curve. The different symbols denote different
geometries.

amplitude and 0 < k < 2), which transforms

Re =
2Q

πRminν
, δ =

Rmin

λ

to Rea and δa according to

Rea =
Rmin

Ra
Re =

(
1− kγ

δa

)
Re, δa = δ + kγ. (3.1)

Figure 9 shows this representation for six choices of k. For 0 6 k < 0.2 the curve has
an inflection point whereas for 0.2 < k 6 2 it has a maximum. The curve with k ≈ 0.2
seems neutral. For an easier comparison the symbols on the curves were chosen such
that physically identical geometries have the same symbol (e.g. open circles, open
squares etc.), even though their δa-values differ according to (3.1). As can be seen the
δ ≈ 0.35 point plays a special role only for the curve with a = 0.

3.2. Dynamic results (pressure drop)

The Stokes solution for a straight tube yields f Re=16. For wavy tubes table 2
contains the product f Re for different geometries and Re found by various authors
as well as our results, which we used as a further test of the numerical method. Our
experimental and numerical results show very good agreement with the numerical
results of Lahbabi & Chang (1986), as well as with the other authors appearing in
the table for the geometries which they considered. Figure 10 shows details of the
pressure–velocity relationship in the form of an f Re versus Re plot for δ = 0.11,
γ = 0.21. Stokesian (p ∼ u) behaviour would appear as a horizontal line in this
representation. In order to have a quantitative standard for the deviation from a
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fRe

Lahbabi Tilton & Fedkiw & Deiber
& Chang Payatakes Newman et al.

δ γ Re This work (1986) (1984) (1977) (1992)

0.35 0.15 0 8.20 8.28 7.97 6.15 8.15
0.1115 0.0477 0 6.36 6.35 6.40 6.57 6.36
0.1115 0.0477 17.1 6.50 6.52 — — 6.61
0.1115 0.0477 72.8 7.61 7.63 — — 7.74
0.1115 0.0477 188 8.78 8.83 — — —

Table 2. Comparison of different numerical predictions of the product fRe.
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Figure 10. fRe versus Re with δ = 0.11 and γ = 0.21, and an enlargement of
the low Re-range.

linear behaviour, we define a limiting Reynolds number Redl (‘dynamic limit’ in the
inset of figure 10) at which the value of fRe has become 0.5% larger than the value
in the creeping-flow range (Re = O(10−2)). This definition is arbitrary since the fRe-
curve remains gradual, but the 0.5% mark agrees quite well with the Reynolds number
beyond which the slope becomes considerably steeper – see enlargement in figure 10.
Using the 0.5% definition puts Redl at 1.75. Figure 10 also shows that there is a
relatively large range 7.3 6 Re 6 58, where fRe versus Re yields an effectively slanted
straight line (fRe ∼ Re), indicating that the pressure drop ∆p through a periodically
constricted tube can be reasonably well approximated by a second-degree polynomial
in u (∆p ∼ u2). For Re > 58 a gradual ‘relinearization’ takes place.

4. Discussion
How can we distinguish viscous from inertial behaviour? Is there a correspondence

between kinematics and dynamics? How can we interpret the ‘relinearization’ at
higher Re?
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γ δ δRo Redet Redl Rekl

0.21 0.11 0.32 1.75 1.75 —
0.21 0.29 0.5 0 3.5 3.5
0.21 0.79 1 0 11.4 11.4
0.15 0.17 0.32 14.5 2.8 —
0.15 0.35 0.5 13.3 3.6 —
0.15 0.85 1 4.5 5.3 —

Table 3. Comparison of Re for the beginning of detachment: dynamic and kinematic limits.

4.1. The transition from the viscous to the inertial region

Four possible indices mark the transition from the viscous to the inertial regime:
less-than-logarithmic growth of the detachment region; transition from symmetric
to asymmetric incipient detachment; a change in the sign of the curvature of the
Redet − δ curves and a change in the pressure–velocity relationship. Numerical values
are similar, sometimes even the same. For example, if we consider the coincidence of
the threshold a/symmetry Re − δ value and the change in the sign of its curvature
at δ ≈ 0.35, although the choice of the scaling radius is somewhat arbitrary, Rmin is
probably the most physically significant choice, determining the flow in the entrance
region of each cavity. We shall now discuss the relationship between values for the
dynamic and kinematic transition.

4.2. Correspondence between kinematics and dynamics

A general correspondence between a beginning nonlinearity in the pressure–velocity
relation and the onset of flow detachment was suggested by Deiber & Schowalter
(1979) and Ralph (1987), who indeed found this coincidence for their tube geometries
at Re ≈ 75 and 15 respectively (the Reynolds numbers are cited in the definitions of
the respective authors). If, however, we examine table 3, which gives the results of
our numerical calculations, such a coincidence can only be found for the geometries
δ = 0.11, γ = 0.21 and δ = 0.85, γ = 0.15 with the Reynolds numbers Redl ≈
Redet ≈ 1.75 and Redl ≈ 5.3, Redet ≈ 4.5 respectively. For the other four geometries
both effects occur separately. The two geometries, δ = 0.29, γ = 0.21 and δ = 0.79,
γ = 0.21, show creeping-flow detachment (Redet = 0) and therefore Redl > Redet.
For the remaining two geometries, δ = 0.17, γ = 0.15 and δ = 0.35, γ = 0.15, just
the opposite holds: Redl < Redet. We thus have three categories: Redet larger than,
Redet approximately equal to, and Redet less than Redl . The threshold values for our
classification scheme using the pressure criteria compare well with those using the
incipient detachment criteria (figure 8). This means that geometries with Redl < Redet
show inertial detachment; those with Redl ≈ Redet show transitional detachment and
those with Redl > Redet show creeping-flow detachment. An example for the case
Redl < Redet was also reported by Lahbabi & Chang (1986), who showed numerically
that Redl ≈ 5, but Redet ≈ 51 for the geometry used in the experiments of Deiber &
Schowalter (1979). A comparison between kinematics and dynamics is given in figure
11 for the case Redl < Redet.

If then, there is generally no correspondence between the beginning of nonlinearity
in the pressure–velocity relation and the onset of flow detachment, is there any
relationship between the kinematic and the dynamic changes?

As already stated in § 3.1 for the curves with creeping flow detachment three regions
can be distinguished (see figure 6): a first region in the low Re range, where the



144 G. Leneweit and D. Auerbach

fR
e

11.0

10.5

10.0

9.5

0 20 40 60 80 100 120 140

Re

Detachment / reattachment points
fRe

9.0

8.5

D
et

ac
hm

en
t/

R
ea

tt
ac

hm
en

t p
oi

nt
sU

, z
/k

8.0 –0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

Figure 11. Comparison between ‘relinearization’ of the fRe curve and the widening of
the detachment zones with δ = 0.35 and γ = 0.15.

detachment zone remains constant in size independent of Re up to some limit named
Rekl; a second region, where the detachment zones grow more than logarithmically;
and, after an inflection point, a third region, where they grow less than logarithmically
with Re. For the geometries where incipient detachment occurs in the transitional
range only the second and third regions can be found in figures 6 and 7. For the
geometries where incipient detachment lies in the inertial range only the third region
can be identified. From these facts we concluded above that creeping-flow detachment
is correlated with zero growth of the detachment zone, transitional detachment with
more than logarithmic growth and inertial detachment with less than logarithmic
growth. A second fact can be added to support this conclusion. From table 3 one
sees that the Reynolds numbers at which creeping-flow detachment zones start to
expand and the beginning of the nonlinearity of the pressure drops observed for these
geometries coincide, i.e. that Rekl ≈ Redl .

4.3. Relinearization and the transition to turbulence

Another question is how the gradual ‘relinearization’ at higher Re can be interpreted.
Ralph (1987) found experimentally and numerically such a relinearized pressure–
velocity relationship for 25 6 Re 6 300 and transition to turbulence for larger Re.
In fact Lahbabi & Chang’s (1986) numerical solution for a different flow geometry
predicted complete relinearization for Re > 1000, but for this geometry, the situation
does not seem to occur experimentally: Deiber & Schowalter (1979) showed that
the flow through the identical geometry becomes turbulent at Re ≈ 400. Although
our Re did not exceed 100 we found the beginning of relinearization for all flow
geometries which we investigated. As can be seen in figure 11 the gradual flattening
of the fRe-curve and the widening of the detachment zones occur simultaneously. A
possible interpretation might be that the expansion of the detachment zones acts as
if the wavy wall was being ‘filled up’ to take on the character of a straight tube both
dynamically as well as kinematically. There is a fifth regime at high Re where the
flow becomes turbulent. Although we know of no studies giving kinematic details for
tubes, for channels Nishimura et al. (1983) found that the regions attain a maximum
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Category → Creeping Transitional Inertial Relinearized Turbulent (after
Aspect ↓ Nishimura et al.)

Symmetry Symmetric Symmetric Asymmetric Tending to Oscillating, but
symmetry symmetric in

mean

Extent of Largest for Gradual Largest for Tending to ?
detachment large δ inversion small δ equal size
zone

Growth of Constant size More than Less than Tending to Reduced, at yet
detachment logarithmic logarithmic constant size higher Re
zone with Re increased

Relation Redet < Redl Redet ≈ Redl Redet > Redl — —
between kine-
matics and
dynamics

Table 4. Flow classification summary as Re increases.

z-extent of 78% for Re = 400, reducing to 69% at Re = 5000, after which they
gradually increase again.

4.4. Flow classification

We have seen that there are a number of criteria according to which the flow discussed
here can be classified. The most fundamental division is according to whether the flow
is attached or not. When detached its form may be symmetric or asymmetric, where
the boundary between the two only roughly corresponds to that between inertial
and transitional flow (see relevant discussion in §3.18). All conclusions about flow
classifications discussed above are summarized in table 4.

Two objections to this classification come to mind. First, the experimental and
numerical data, although in good agreement, are too limited to make any claim to
generality. The only way to see whether the scheme is sound, is to test it in further
studies. Unfortunately Chow & Soda’s (1972) attempt at a perturbation solution
seems not be clear of error (see Hemmat & Borhan 1995 and Leneweit 1995), so
that this task remains to be done. Secondly, the definitions of the limiting values Redl
and Rekl (the latter determined with the naked eye from figure 6) are too arbitrary
to enable a really precise comparison between kinematics and dynamics. However,
this criticism also applies to such concepts as, for example, that of boundary layer
thickness. It thus remains to be seen whether the distinctions summarized in table 4
prove fruitful or not.

5. The effect of elongational strain rate in the flow through periodically
constricted tubes and porous media

In the introduction we discussed work done on porous media, emphasizing the
breakdown of the Darcy–Kozeny law as well as the discrepancy between estimations
and empirically found values for the constant in the classical f–Re relationship for
creeping flow. According to Bird et al. (1960, p. 129) the friction factor fb of a porous
medium can be derived from the tube friction factor f as given in (2.2) when the
minimum tube radius Rmin is replaced by twice the hydraulic radius Rh. This radius
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is simply the ratio of the volume of the void space to the wettable surfaces of the
porous medium. By idealizing the porous medium as a packed bed of spheres of equal
diameter Dp one obtains

fb =
∆p

ρu2
b

Dp

L

ε3

(1− ε) , (5.1)

where ub denotes the superficial velocity, L the length of the porous medium in the
direction of flow and ε the ratio of the void volume to the total particle volume.
When the pressure drop ∆p is given by the Hagen–Poiseuille law using the hydraulic
radius concept embodied in (5.1) one obtains

fb = 72
(1− ε)µ
ρDpub

=
72

Reb
(5.2)

with the definition of the bed Reynolds number Reb given implicitly. Equation (5.2) is
usually referred to as the Darcy–Kozeny law. By evaluating the empirical data from
several investigators Ergun (1952) found

fb Reb = 150 + 1.75Reb = αb + βb Reb, (5.3)

where the influence of the nonlinear terms becomes noticeable for Reb = O(1). For
periodically constricted tubes we found similar results to (5.3) for the pressure drops
(see figure 10). The relationship between f and Re is well approximated for a large Re-
range by the second-order polynomial fRe = α+βRe+ζRe2. For smaller Re(Re < 90)
before relinearization becomes apparent, the first two terms

fRe = α+ βRe (5.4)

are adequate. In this Re-range, it is thus possible to compare the dynamic behaviour
of porous media and periodically constricted tubes when the minimum tube radius
Rmin used in (2.2) is replaced by twice the hydraulic radius 2Rh in the definitions of
Re (2.1) and f (2.2). Re and f are multiplied with a factor (3/2) and 3 respectively to
yield Reb and fb. Then, (5.4) can be written as

fbReb = αb + βbReb. (5.5)

Table 5 shows a comparison of the coefficients αb and βb of the periodically constricted
tube and the porous medium. The values in table 5 show that for the tube geometries
considered here the use of a tube with δ = 0.17 and γ = 0.15 has the closest
similarity to the dynamic behaviour of flows through porous media in the low Re-
range (Re < 90). For higher Re dynamic similarities vanish because relinearization
does not seem to occur in porous media flow. Now it was not our aim to optimize
the dynamic agreement between tube flow and porous media flow, for which purpose
one could certainly find geometries (in terms of the parameters γ and δ) that match
better with the empirical data of porous media in the low Re-range. We, rather, ask
the question whether the dynamically similar behaviour between porous media and
tubes in the low Re-range reflected in table 5 gives any new insight into the behaviour
of porous media. Is this the case?

Broaching the problem of the linear velocity term first, Durst et al. (1987) raised the
question as to how the discrepancy between the theoretical and experimental values
of αb (72 and 150 or 182 respectively) can be explained. Now it is obvious that the
introduction of the hydraulic radius concept and the neglect of the tortousity of the
pores by replacing their length with the length of the porous medium in the direction
of flow is a very simplified treatment where no exact agreement can be expected. Durst
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γ δ αb βb

0.21 0.11 738.68 10.23
0.21 0.29 96.48 1.41
0.21 0.79 32.88 0.03
0.15 0.17 205.74 1.44
0.15 0.35 78.75 0.30
0.15 0.85 45.18 0.06

porous medium (Ergun 1952) 150 1.75
porous medium (Durst et al. 1987) 182 1.75

Table 5. Comparison of αb and βb from (5.5) for periodically constricted tubes and
a porous medium.

et al. showed that the pressure drop in an arbitrarily shaped tube is proportional to
the energy dissipation ∆ėdiss per unit time in the flow volume considered, provided
the surface integral over the inertial terms disappears. This holds for a periodically
constricted tube with a laminar flow if L = nλ(n = 1, 2, 3 . . .):

∆p

L
=

1

Q

(∆ėdiss)

L
.

They then suggested that the neglected elongational strain terms in the energy
dissipation

∆ėdiss =

∫
V

2µ

[(
∂ur

∂r

)2

+

(
ur

r

)2

+

(
∂uz

∂z

)2]
︸ ︷︷ ︸

elongational terms

+ µ

[(
∂ur

∂z
+
∂uz

∂r

)2]
︸ ︷︷ ︸

shear terms

 dV (5.6)

for an axisymmetric geometry without swirl would lead to an improvement in the the-
oretical estimate since only the underlined shear strain term in the energy dissipation
is considered in the straight tube approximation made implicitly with the hydraulic
radius concept. Unlike the flow geometry of a randomly packed bed of spheres in-
vestigated by Durst et al. (1987), our flow geometry admits an easy estimation of
the energy dissipation in the Stokes limit Re → 0, making use of the perturbational
analysis by Chow & Soda (1972). To examine the above assumption, we need only to
know the ratio of elongational to shear strain Θ:

Θ =

∫
V

{
2µ

[(
∂ur

∂r

)2

+

(
ur

r

)2

+

(
∂uz

∂z

)2]}
dV∫

V

µ

(
∂ur

∂z
+
∂uz

∂r

)2

dV

. (5.7)

Table 5 showed that the geometry with δ = 0.17 and γ = 0.15 gives a rough
approximation of the dynamics in porous media. Since the geometry with δ = 0.11
and γ = 0.21 gives an upper limit for both αb and βb we calculated Θ using (5.7) and
found Θ = 0.56593 for δ = 0.17 and γ = 0.15 and Θ = 0.57317 for δ = 0.11 and
γ = 0.21. Thus the energy dissipated due to elongational strain becomes maximally
3/5 of that dissipated by shear in a porous medium at low Re. From this it seems
that the error in the theoretical determination of αb arises both from the geometrical
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simplifications (hydraulic radius, pore length) as well as from neglecting elongational
strain.

The existence of relatively strong elongational strain for low-Re flow through
porous media might give a hint to the solution of a further problem concerning
the quadratic, or more generally, the nonlinear velocity terms, which are usually
identified with inertial effects that can be determined for Re as low as O(1). For it is
the elongational strain term and the radial velocity ur in the axial component of the
steady incompressible axisymmetric Navier–Stokes equation without swirl,

ur
∂uz

∂r
+ uz

∂uz

∂z︸ ︷︷ ︸
convective inertial terms

= −1

ρ

∂p

∂z
+ ν∆uz︸︷︷︸

viscous terms

(the underlined terms) which cause the convective inertial terms not to vanish as they
do in straight laminar tube flow. Thus, inertia may well become apparent at much
lower Re without the necessity for a transition to turbulent flow.

6. Conclusion
We have seen how the manner of increase of the detachment region with increasing

Re (curvature, inflection points) is sensitive to geometrical parameters. Incipient
detachment does not generally begin in a trough, but often upstream of it. For
γ 6 0.15 and δ > 0.94 the detachment region showed no sign of decreasing, even
down to Re = 10−4. For a given γ the point of incipient detachment at Redet moves
upstream out of the trough as the tube narrows. We have also seen how the transition
in the pressure drop from a linear Poiseuille-like behaviour to a nonlinear pressure
drop–velocity relationship is not generally related the appearance of a detachment
region, but rather to its form and the nature of its growth. We then looked at various
possible criteria for determining the transition from the viscous to the inertial range.
Finally, we discussed the effect of elongational terms in the energy dissipation for flow
through periodically constricted tubes and compared this flow with the flow through
porous media.

The question of the interplay between viscous and inertial forces is an interesting
and still unanswered one. A study of the local pressure field might be helpful
here, because, as mentioned at the outset, classical inertial detachment generally
corresponds to the existence of an adverse pressure gradient. For example, does
symmetric detachment have a significant effect on the local pressure field? A final
question is whether a variational approach might be fruitful. The Stokes equations
exhibit minimal dissipation: Stokes detachment zones thus dissipate less energy than
any kinematically possible flow that obeys the same boundary conditions (theorem
by Helmholtz, see e.g. Batchelor 1967). This property of Stokes flows might also
give a hint to the understanding of the difference in the detachment conditions and
their underlying mechanisms for asymmetric (inertial) and symmetric (transitional
and creeping) detachment.

We thank Dr R. Kessler, DLR Göttingen, for supplying us with the numerical code
and an unknown referee, for pointing out the effect of changing the reference radius
from R0 to Rmin on some of the results.
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